March 30, 2016

Steidle Building Renewal Project Senior Thesis Presentation Outline

[Slide Title] (Number of Slides)

- 1. Title Slide (1)
- 2. Presentation Summary & Criteria Evaluation (1)
- 3. Project Background (1)
- 4. Analysis 1: Alternative Vertical Transportation Processes
 - a. Issue Summary (1)
 - b. Means and Methods (2)
 - c. Results (2)
 - d. Conclusion (1)
- 5. Analysis 2: Prefabricating the South Facade
 - a. Issue Summary (1)
 - b. Means and Methods (2)
 - c. Structural Breadth Topic: Column and Support Angle Analysis (4)
 - d. Mechanical Breadth Topic 2: Thermal and Moisture Protection Analysis (4)
 - e. Results (2)
 - f. Conclusion (1)
- 6. Analysis 3: Process Development for Executing 3D Coordination
 - a. Issue Summary (1)
 - b. Research Findings (1)
 - c. Means and Methods (1)
 - d. Results (2)
 - e. Conclusion (1)
- 7. Industry Research Topic: Best-Value Selection Process for Subcontractors
 - a. Issue Summary (1)
 - b. Research Findings (2)
 - c. Questionnaire Development (1)
 - d. Questionnaire Results (2)
 - e. Conclusion (2)
- 8. Summary of Findings (1)
- 9. Acknowledgements (1)

Steidle Building Renewal Project Architectural Engineering Senior Thesis

PRESENTER: JEFFREY DUCLOS

CONSTRUCTION MANAGEMENT OPTION

ADVISOR: DR. JOHN MESSNER

APRIL 13TH, 2016

Presentation Guide

Summary & Criteria Evaluation

Project Background

Analysis #1: Alternative Vertical Transportation Processes

Analysis #2: Prefabricating the South Façade

Issue Summary
Means and Methods

Structural Breadth: Columns and Support Angles Analysis

Mechanical Breadth: Thermal and Moisture Protection Analysis Results

Conclusions

Analysis #3: Process Development for Executing 3D Coordination

Industry Research Topic: Best-Value Selection Processes for Subcontractors

Summary of Findings

Acknowledgements

Mechanical Breadth: Thermal And Moisture Protection

Goal: Determine if the proposed design change significantly affects the thermal and moisture protection performance of the façade.

Process:

- **Determine if R-Value for** the Limestone Façade.
- 2. Determine the R-Value for the Precast Concrete Façade
- 3. Analyze any changes to the vapor barrier for potential deficiencies

Limestone Façade	
Material	R-Value
3-1/2" Limestone	
1-1/" Air Space	
2" Rigid Insulation	
3'-6 ½" Deep Concrete Column	
5/8" Gypsum Wall Board (x2)	
Overall R-Value	

Thermal Performance of the

Presentation Guide

Summary & Criteria Evaluation

Project Background

Analysis #1: Alternative Vertical Transportation Processes

Analysis #2: Prefabricating the South Façade

Analysis #3: Process Development for Executing 3D Coordination

Industry Research Topic: Best-Value Selection Processes for Subcontractors Issue Summary

Research Findings
Questionnaire Development
Questionnaire Results

Conclusions and Deliverable

Summary of Findings

Acknowledgements

Average Criteria Importance Based on Returned Questionnaires

Additional Criteria

Construction Managers

- or similar Project Types
- Highlighting Key Project Leadership

MEP Subcontractors

- Experience working with Penn State Experience working with Penn State
 - Knowledgeable about Building Automation Systems (BAS)
 - Familiarity with the Commissioning **Process**

What's Valuable to a Project?

- **Fulfilling the Requirements of the Contract**
 - Meeting the Schedule
 - Meeting the Budget
 - Ensuring a Safe Project
 - Delivering a High Quality Project
- Having a Collaborative Team
- Attaining a High End-User Satisfaction